Digital Bootcamp - Fast Track Class

Fast Track - Python Dashboard

📚 Kenapa harus belajar Fullstack Mobile Apps Development?

👨‍🏫 Trainer yang akan mengajar 👩‍🏫

tim-Mentor-Data-Science

Yoshua C Putro

System, AI/ML & Data Expert

System Architecture, Machine/ Deep Learning, Big Data & BI, Cloud Computing.

🎯 Target dan Sasaran kelas bootcamp ini

  • Membekali developer Laravel dengan pemahaman praktik keamanan aplikasi web serta alur CI/CD modern agar dapat membangun dan merilis aplikasi yang aman, cepat, dan otomatis.
  • Menyediakan fondasi penting untuk masuk ke dunia kerja IT, khususnya bagi mereka yang ingin memiliki keunggulan di bidang secure coding dan otomatisasi deployment menggunakan pipeline DevOps.
  • Menjembatani dua skill penting: keamanan aplikasi di level code dan otomatisasi deployment berbasis Git, Docker, dan server pipeline agar kolaborasi antara tim dev dan ops menjadi seamless.
  • Memberikan kemampuan membangun aplikasi Laravel yang aman sekaligus membekali cara menyusun CI/CD pipeline untuk mempercepat deploy, rollback, dan monitoring proyek dengan skala kecil hingga menengah.

💻 Topik yang akan dipelajari

  • Introduction to Data Visualization & Streamlit
    Fundamentals

  • Data Handling & Core Streamlit Widgets

  • Data Visualization with Streamlit

  • Structuring & Enhancing Streamlit Applications

  • Deployment, Advanced Topics

🎁 Benefit yang didapat

ikon-dibimbing-it=expert

Dibimbing IT Expert &
Top Level Management Industri

ikon-fleksibelitas-program

Fleksibilitas Program dan
Fokus Skillset Tertentu

ikon-sertifikat

Sertifikat Diterbitkan CCIT FT-UI
(Universitas Indonesia)

ikon-belajar-dan-upgrade

5 Hari Belajar & Upgrade Skill Bareng Praktisi Top Industri

ikon-pendamping-24jam

Pendampingan Personal dan
24 Jam Akses Materi via LMS

ikon-bonus-eksklusif

Bonus Eksklusif 2 Materi Soft Skill
Buat Siap Kerja!

⚙️ Tools yang akan digunakan

android-studio-icon

Android Studio

Intellij IDEA

firebase-icon

Firebase

Figma

📝 Proyek yang akan dikerjakan

  • Otomatisasi Build dan Test Aplikasi Node.js di GitHub Actions.
  • Deploy Aplikasi Laravel ke Server Menggunakan Git Hook (Tanpa CI/CD Tools).
  • Dockerisasi Aplikasi Web dan Deploy ke Docker Hub.
  • CI/CD dengan GitLab CI: Build & Deploy Static Web ke Netlify
  • CI/CD Pipeline dengan Jenkins untuk Deploy Laravel ke VPS (Ubuntu)
  • Kubernetes Deployment Otomatis dengan GitHub Actions + Docker + Helm

🏢 Prospek karir

📢 Untuk siapa kelas ini?

  • Mahasiswa (UI & Non UI) dan Umum yang ingin belajar dan memperkaya keahlian IT System and Cloud Operation di bidang DevOps (CI/CD).
  • SysAdmin atau Infrastructure Engineer yang Ingin Naik Level ke DevOps.
  • Web and Mobile Developer yang Ingin Naik Level Keamanan dan Deployment.
  • Backend Engineer & DevOps Enthusiast yang Ingin Kolaborasi Lebih Efektif.
  • Freelancer & Startup Tech Builder yang Butuh Efisiensi & Keamanan.
  • Product Manager / Tech Enthusiast

🕣 Jadwal

  1. Live Zoom setiap Senin – Jumat pukul 19.00 – 22.00 (Malam)
  2. Durasi kelas 2,5 – 3 jam per sesi selama 5 hari.
  3. Pendaftaran akan segera dibuka.

🗂️ Teknis Pelaksanaan

  1. Peserta yang melakukan pendaftaran, wajib join di group Whatsapp yang diberikan.
  2. Setiap sesi live akan dilaksanakan secara online menggunakan Zoom selama 5x pertemuan dilanjutkan dengan project portofolio dan bimbingan softskill untuk siap kerja dan pengembangan karir.
  3. Peserta wajib aktif di platform LMS (Learning Management System) baik dalam pembelajaran maupun forum kolaborasi.
  4.  Peserta dapat mendownload ataupun mengakses materi belajar termasuk sampel source code (khusus kelas programming) di LMS.
  5. Pesert dapat bertanya dan berdiskusi dengan mentor dan peserta lain terkait materi, tugas dan konsultasi di LMS.

Topic: Introduction to Data Visualization & Streamlit Fundamentals

Module 1: The Power of Dashboards & Introduction to Streamlit

  • Why build dashboards? (Communicating insights, monitoring data, interactive exploration).
  • What is Streamlit? (Key features: simplicity, Pythonic, fast iteration).
  • Examples of Streamlit applications.
  • Course overview and objectives.

Module 2: Setting Up Your Streamlit Environment

  • Streamlit installation recap & verification (`pip install streamlit`, `streamlit hello`).
  • Creating a project directory and setting up a virtual environment.
  • VS Code for Streamlit development (running apps from the terminal).
  • Understanding the Streamlit development flow: write, save, auto-reload
  • Hands-on Lab 1.1: Install Streamlit, run the “streamlit hello” demo app. Create a new project directory, set up a virtual environment, activate it,
    and write a simple “Hello, Streamlit Dashboard!” script.

Module 3: Core Streamlit Concepts: Text & Data Display

  • st.write(): The magic command.
  • Displaying text: st.title(), st.header(), st.subheader(), st.markdown(), st.code().
  • Displaying data: st.dataframe(), st.table(), st.metric(), st.json().
  • Working with variables and showing their values.
  • Hands-on Lab 1.2: Create a simple Streamlit app that displays different types of text, a Pandas DataFrame (can be created manually for now), and some metrics.

Module 4: Basic Input Widgets & Interactivity

  • Introduction to widgets for user input.
  • Buttons: st.button().
  • Text input: st.text_input(), st.text_area(), st.number_input().
  • Selection widgets: st.selectbox(), st.multiselect(), st.radio().
  • Boolean input: st.checkbox().
  • Date and time input: st.date_input(), st.time_input().
  • Hands-on Lab 1.3: Build an interactive app where users can input their name and see a personalized greeting. Add a selectbox to choose an
    option and display the choice.

Module 5: Layout & Media Elements

  • Basic layout: Understanding the top-down script execution.
  • Adding images, audio, and video: st.image(), st.audio(), st.video().
  • The sidebar: st.sidebar()
  • Hands-on Lab 1.4: Create an app that displays an image, allows users to input text in the sidebar, and shows the input in the main area.

Topic: Data Visualization with Streamlit

Module 10: Introduction to Plotting Libraries

  • Overview of popular Python plotting libraries: Matplotlib, Seaborn, Plotly Express, Altair.
  • Why choose one over the other for Streamlit? (Interactivity, ease of use).
  • Focus on Plotly Express for its interactivity and Streamlit integration.

Module 11: Basic Plotting with Matplotlib & Seaborn in Streamlit

  • Using st.pyplot() to display Matplotlib and Seaborn plots.
  • Creating basic plots: line charts, bar charts, histograms, scatter plots with Matplotlib/Seaborn.
  • Customizing plots (titles, labels, colors) – basics.
  • Hands-on Lab 3.1: Load a dataset using Pandas. Create and display a histogram of a numerical column and a bar chart of a categorical
    column using Matplotlib/Seaborn within Streamlit.

Module 12: Interactive Plotting with Plotly Express

  • Introduction to Plotly Express: syntax and key features.
  • Creating common interactive charts: scatter plots, line charts, bar charts, pie charts, histograms.
  • Using st.plotly_chart() for seamless integration.
  • Leveraging Plotly’s built-in interactivity (hover, zoom, pan).
  • Hands-on Lab 3.2: Recreate the plots from Lab 3.1 using Plotly Express. Explore the interactive features of the generated plots within the
    Streamlit app. Add a dropdown to select columns for plotting.

Module 13: Advanced Plotly Express Features & Customization

  • Creating more complex plots: box plots, violin plots, heatmaps, maps (if data is available).
  • Customizing Plotly Express charts (colors, templates, labels, legends).
  • Linking widget inputs to plot parameters for dynamic visualizations.
  • Hands-on Lab 3.3: Build a dashboard where users can select different columns from a dataset to generate various Plotly Express charts (e.g.,
    scatter plot with selectable X and Y axes, bar chart with selectable category).

Topic: Data Handling & Core Streamlit Widgets

Module 6: Introduction to Pandas for Data Manipulation

  • Brief recap of Pandas DataFrames and Series (if audience is very junior, spend more time here).
  • Loading data from CSV files: pd.read_csv().
  • Basic data inspection: .head(), .tail(), .info(), .describe().
  • Simple filtering and selection of data.
  • Hands-on Lab 2.1: Load a sample CSV dataset (e.g., Titanic, Iris) into a Pandas DataFrame and display basic information and the first few rows in a Streamlit app.

Module 7: Connecting Pandas with Streamlit Display

  • Dynamically displaying DataFrame content based on user input.
  • Using widgets to filter DataFrame rows or select columns.
  • Updating st.dataframe() or st.table() based on selections.
  • Hands-on Lab 2.2: Enhance the previous lab by adding a selectbox to choose a column and display its unique values, or a slider to filter data based on a numerical column.

Module 8: Advanced Input Widgets & State Management

  • Sliders: st.slider()
  • File uploader: st.file_uploader()
  • Color picker: st.color_picker()
  • Understanding Streamlit’s execution model and how state is implicitly handled.
  • Introduction to st.session_state for explicit state management (simple use cases).
  • Hands-on Lab 2.3: Create an app that allows users to upload a CSV file. Display the contents of the uploaded file. Add a slider to filter rows
    based on a numeric column in the uploaded data. Use st.session_state to remember a value across reruns (e.g., a counter).

Module 9: Forms and Control Flow in Streamlit

  • Using st.form() and st.form_submit_button() to batch input.
  • How forms help in preventing multiple reruns on widget interaction.
  • Conditional display of elements using Python’s if/else statements.
  • Hands-on Lab 2.4: Create a form with multiple input fields (e.g., name, email, feedback). Display the submitted information only after the user
    clicks a “Submit” button.

Topic: Structuring & Enhancing Streamlit Applications

Module 14: Layout Options: Columns and Containers

  • st.columns(): Arranging elements side-by-side.
  • st.container(): Grouping elements and controlling layout flow.
  • st.expander(): Creating collapsible sections.
  • Best practices for organizing content on the page.
  • Hands-on Lab 4.1: Redesign a previous app to use columns for a more compact layout. Place filters in one column and charts/data in another.
    Use an expander for detailed information.

Module 15: Building Multi-Page Applications

  • Strategies for creating multi-page apps in Streamlit (since Streamlit 1.10+, this is much simpler with files in a pages/ directory).
  • Creating a pages/ directory and adding Python files for different pages.
  • Navigation between pages.
  • Sharing data or state between pages (discussion of st.session_state in multi-page context).
  • Hands-on Lab 4.2: Convert a single-page dashboard into a multi-page app. For example, one page for data overview, another for detailed
    plotting, and a third for data input/upload.

Module 16: Caching and Performance Optimization

  • Understanding Streamlit’s caching mechanisms: st.cache_data() and st.cache_resource()
  • When and how to use caching for improving app performance (e.g., expensive computations, loading large datasets).
  • Best practices for efficient caching.
  • Hands-on Lab 4.3: Identify a slow part of an existing app (e.g., data loading or a complex calculation). Apply st.cache_data() to improve its
    loading speed and observe the difference.

Module 17: Theming and Customization (Basic)

  • Introduction to Streamlit’s theming options (config.toml file).
  • Setting primary color, background color, font.
  • Brief overview of st.markdown with unsafe_allow_html=True for minor CSS tweaks (with caveats).
  • Hands-on Lab 4.4: Customize the appearance of your Streamlit app by creating a .streamlit/config.toml file and setting basic theme options
    like primary color and background color.

Topic: Deployment, Advanced Topics

Module 18: Error Handling and Debugging in Streamlit Apps

  • Common pitfalls and errors in Streamlit development.
  • Using st.error(), st.warning(), st.info(), st.success() for user feedback.
  • Python’s try-except blocks for handling errors gracefully within the app logic.
  • Debugging tips for Streamlit apps.
  • Hands-on Lab 5.1: Add error handling to an app that loads data or performs calculations. For example, display a user-friendly error if a file
    upload fails or data is in an unexpected format.

Module 19: Preparing Your App for Deployment

  • Managing dependencies: requirements.txt file.
  • Structuring your project for deployment.
  • Brief overview of Streamlit Community Cloud (formerly Streamlit Sharing).
  • Other deployment options (conceptual: Docker, Heroku, cloud VMs).

Module 20: Introduction to Streamlit Components (Conceptual)

  • What are Streamlit Components
  • How they extend Streamlit’s functionality
  • Finding and using existing components
Digiskillhub - WEB_FAST_PYTHON DASHBOARD

Premium

Rp.2.000.000

Biaya Pelatihan

Rp.380.000

Frequently Asked Question

Tidak. Kursus ini dirancang dan disesuaikan  untuk pemula , mahasiswa, umum dan profesional tanpa latar belakang IT. Materi disusun secara bertahap, mulai dari dasar hingga tingkat lanjut, sehingga dapat diikuti oleh siapa saja.

Ya. Setelah menyelesaikan seluruh materi dan tugas yang diberikan, Anda akan menerima sertifikat resmi dikeluarkan oleh CCIT FT Universitas Indonesia (UI) yang dapat digunakan untuk melamar pekerjaan atau menambah portofolio profesional.

Kursus ini menggunakan metode blended learning, yaitu kombinasi antara:

  • Belajar mandiri melalui platform e-learning, di mana peserta dapat mengakses materi, video, dan tugas kapan saja.
  • Virtual meet via Zoom (live session) bersama mentor, dijadwalkan secara rutin untuk diskusi, tanya jawab, atau membahas topik penting secara interaktif.
    Metode ini memberikan fleksibilitas belajar sekaligus pengalaman interaktif dengan pendampingan mentor.

Ya. Kami menyediakan forum diskusi, sesi tanya jawab bersama mentor, serta dukungan teknis untuk membantu Anda selama proses belajar.

Untuk kursus secara umum (selain Mobile Development), perangkat minimal yang disarankan adalah:

  • Prosesor: Minimal Dual-core, seperti Intel Core i3 generasi ke-6 atau AMD Ryzen 3 2200U
  • RAM: Minimal 4GB (disarankan 8GB)
  • Sistem Operasi: Windows 10, macOS 10.13 atau versi lebih baru
  • Koneksi Internet: Stabil, minimal 10 Mbps

    Untuk kursus Mobile Development dan Game Development, disarankan:
  • Prosesor: Quad-core, seperti Intel Core i5 generasi ke-8 atau AMD Ryzen 5 3500U
  • RAM: Minimal 8GB (disarankan 12GB atau lebih)
  • Penyimpanan: SSD minimal 256GB

Ya. Kursus ini bekerja sama dengan CCIT FT Universitas Indonesia, sehingga sertifikat yang diterbitkan memiliki kredibilitas tinggi dan dapat menjadi nilai tambah pada CV Anda.

Durasi kelas intensive bootcamp adalah 3 bulan, dengan sesi live melalui Zoom 2 kali dalam seminggu, masing-masing berdurasi 3 jam. Jadwal berlangsung pada hari kerja (weekdays) pukul 19.00 – 22.00 WIB atau hari libur (weekend) pukul 09.00 - 12.00

Durasi kelas fast track adalah 5 hari, dengan sesi live melalui Zoom 5 kali dalam seminggu, masing-masing berdurasi 3 jam. Jadwal berlangsung pada hari kerja (weekdays) pukul 19.00 – 22.00 WIB atau hari libur (weekend) pukul 09.00 - 12.00

Ya. Materi kursus dapat diakses kapan saja melalui platform LMS atau LXP, sehingga Anda bisa belajar secara fleksibel di luar jadwal live session.

Ya. Tugas diberikan di setiap akhir pertemuan. Selain itu, peserta akan mengerjakan proyek nyata (real project) sebagai bagian dari proses belajar dan portofolio.

Ya. Kursus ini berbayar, namun Anda akan mendapatkan akses seumur hidup ke seluruh materi pembelajaran, termasuk video, modul, dan forum diskusi.

Ya. Peserta akan mendapatkan bimbingan langsung dari mentor profesional, serta akses ke group chat khusus untuk berdiskusi dan berkonsultasi.

Tidak ada tes masuk untuk dapat mengikuti program di Digiskill Hub, semua orang dengan latar belakang apapun dapat mengikuti program ini

Ingin belajar skill digital menarik lainnya?

Kami juga ada program Fast Track Class lainnya — pembelajaran mendalam dan langsung praktik bareng mentor!